The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

ISNE I HERCEGOVINE * ИНСТИТУТ ЗА МЕТРОЛОГИЈУ БОСНЕ И ХЕРЦЕГОВИНЕ×INSTITUTE OF

EURAME'

Validation of methods for determination of specific elements in environmental samples using Microwave Plasma Atomic Emission Spectrometry (MP-AES)

Aida Jotanović

17-21 September 2017, Heraklion, Greece

Contents:

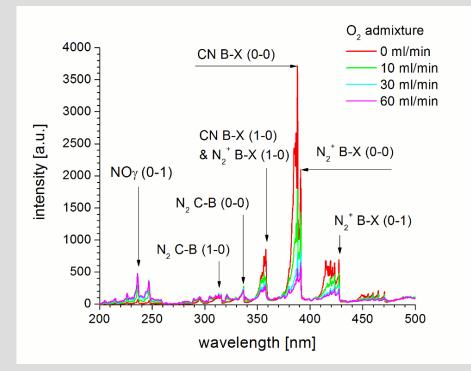
- **1.** Introduction to the topic of presentation
- 2. Optimisation of instrumental parameters
- 3. Presentation of the results
- 4. Further steps in method validation process

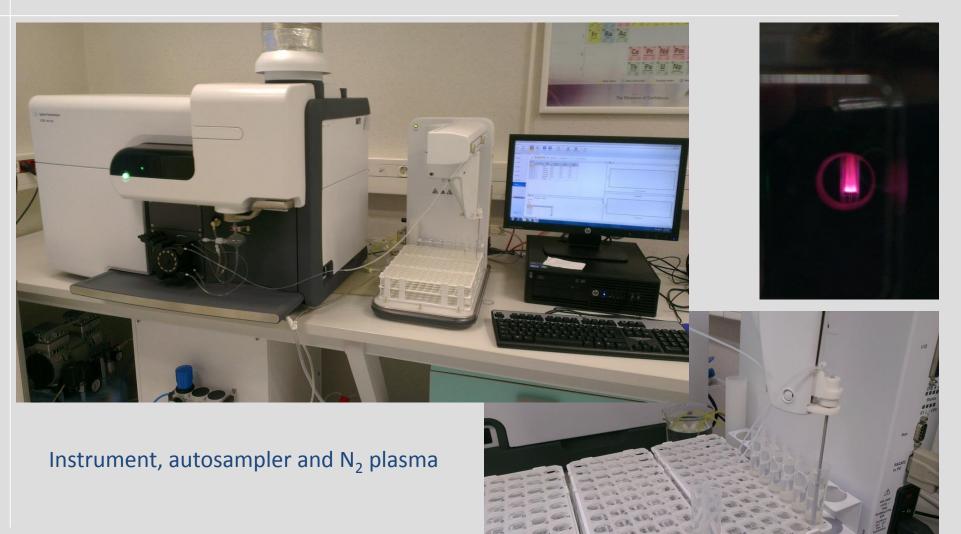
1. Introduction to the topic

- EMPIR project: 14RPT03 Matrix reference materials for environmental analysis (ENVCRM)
- Candidate reference material for river water sample: As, Cd, Hg, Ni and Pb, as mandatory elements, and Se, as optional elements
- Candidate reference material for soil sample: As, Cd, Co, Cr Cu, Fe, Mn, Ni, Pb, Sb, V and Zn

ELEMEN	TS	SOIL RM Target(mg/kg)	RIVER RM Target(ug/kg)
As		15	15
Cd		1.3	0.5
Со	-	40	/
Cr	-	70	/
Cu	-	60	/
Fe	4	No target	/
Mn	4	No target	/
Ni	-	50	15
Pb	-	60	5
Sb		Sb	/
v	(40	/
Zn	-	140	/
Hg		1.4	0.1

1. Introduction to the topic


- Inter-comparison studies between the partners will be organized in order to produce and characterise the candidate reference material for river water sample and soil sample
- The Agilent 4200 MP-AES (*Microwave Plasma Atomic Emission Spectrometer*) is one of analytical techniques that will be used for characterisation of RM
- This work presents development and validation of methods for chemical analysis of analytes of interest
- The work to be presented is implemented under the EMPIR 14RPT03 Matrix reference materials for environmental analysis



- **Description of the instrumental technique:**
- MWP-AES (Microwave plasma atomic emission spectrometer)
- Nitrogen plasma ignited indirectly by means of temporary formed Ar plasma

- The stability and composition of N₂ plasma is a function of amount of oxygen present
- Plasma temperature is around 6000°C and it emits high levels of microwave radiation

- Identification and quantification of the elements in plasma is done by optical detection of either atomic or ionic emission spectral lines at selected wavelengths
- Detection covers near UV and visible part of the EM spectra enabling extensive elemental analysis
- Liquid sample is introduced in plasma using peristaltic pump & nebulizer. It is preferred that the sample is acidified with nitric acid (pH<2) with TDS up to 3%

- Analytes of interest for soil reference material are selected:
- Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn
- As and Sb is ongoing with aplication of Hydride Generation technique
- Hg will be the last step for development of the method

E	LEMENTS	SOIL RM Target(mg/kg)
As		15
Cd		1.3
Со	(40
Cr	4	70
Cu	—	60
Fe	-	No target
Mn	-	No target
Ni	(50
Pb	-	60
Sb		Sb
v	(40
Zn	-	140
Hg		1.4

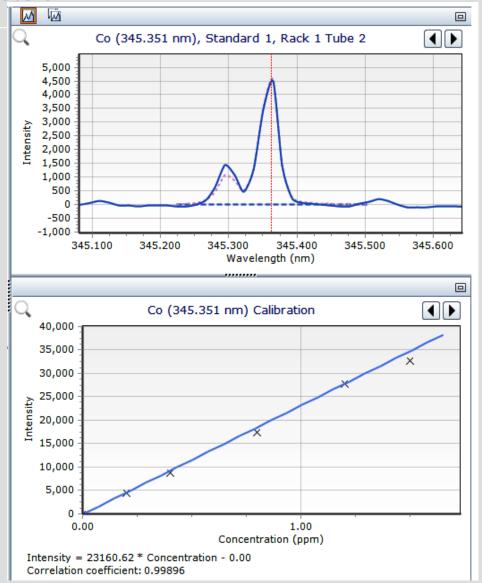
- Method settings:
- a) Emission lines selected for analytes of interest
- b) Viewing position for each line and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- c) Calibration fit: linear / rational with blank subtraction
- d) Concentration intervals for analytes of interest

one by one element ...

Set up common instrumental conditions

Common Conditions

Replicates:	3 🔹 🛈	
Pump speed (rpm):	10 🛓 🛈	
Sample introduction:	Manual	
	Autosampler	
Uptake time (s):	20 🚔 🛈 📝 Fast Pu	mp
Rinse time (s):	80 🚔 🕕 📝 Fast Pu	mp
Stabilization time (s):	30 🔹 🛈	
Number of pixels:	3 •	
Air injection required:		

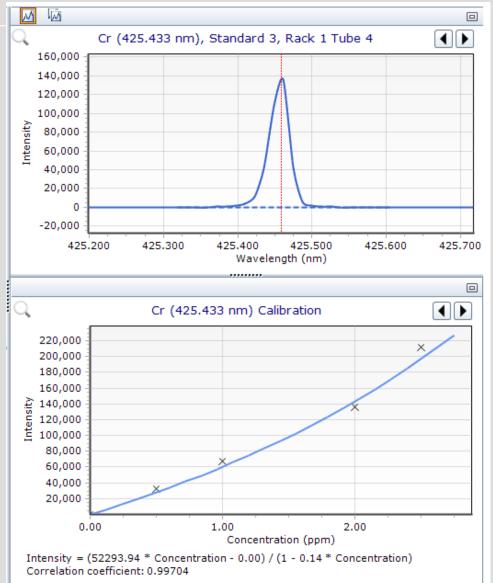

<u>Cobalt</u>

- ✓ Emission line selected: 345.351 nm
- Possible interferences are shown on graph below

Wavelength (nm) Ion Intensity Order 340.512 1 35116.9 1 345.351 1 60379.5 2 350.228 1 31459.7 3 240.725 1 23139.3 4 341.234 1 22363.3 5 350.631 1 21835.8 6 352.684 1 21444.5 7 347.404 1 19122.2 8 385.6337 1 18996.1 9 356.937 1 18081.1 11 352.981 1 17196.3 12 Possible interferences on Co (345.351 nm) If 50.000 - - - - - - - - 100.000 - - - - - - - - - - - 100.000 - - - - - - - - - - - - -				L F	Add		
345.351 1 60379.5 2 350.228 1 31459.7 3 240.725 1 23139.3 4 341.234 1 2263.3 5 350.631 1 21835.8 6 352.684 1 21444.5 7 347.404 1 1912.2 8 384.547 1 18996.1 9 356.937 1 18614.5 10 389.407 1 18081.1 11 352.981 1 17196.3 12	Wavelength (nm)	lon	Intensity	Order	*		
250.228 1 31459.7 3 240.725 1 23139.3 4 341.234 1 22363.3 5 350.631 1 21835.8 6 352.684 1 21444.5 7 347.404 1 19122.2 8 384.547 1 18996.1 9 356.937 1 18614.5 10 389.407 1 18081.1 11 352.981 1 17196.3 12 ▼	340.512	T	35116.9	1			
240.725 I 23139.3 4 341.234 I 22363.3 5 350.631 I 21835.8 6 352.684 I 21444.5 7 347.404 I 19122.2 8 384.547 I 18996.1 9 356.937 I 18614.5 10 389.407 I 18081.1 11 352.981 I 17196.3 12 • Possible interferences on Co (345.351 nm) • 160.000 • 100,000 • • • • • • • •	345.351	1	60379.5	2			
240.725 I 22139.3 4 341.234 I 22363.3 5 350.631 I 21835.8 6 352.684 I 21444.5 7 347.404 I 19122.2 8 384.547 I 18996.1 9 356.937 I 18614.5 10 389.407 I 18081.1 11 352.981 I 17196.3 12 • Possible interferences on Co (345.351 nm) III III 150,000 • 100,000 • • • • • • • •	350.228	T.	31459.7	3	-		
350.631 I 21835.8 6 352.684 I 21444.5 7 347.404 I 19122.2 8 384.547 I 18996.1 9 356.937 I 18614.5 10 389.407 I 18081.1 11 352.981 I 17196.3 12 ▼ Possible interferences on Co (345.351 nm) ■ ↓ 150,000 - ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	240.725	1	23139.3	4	=		
352.684 I 21444.5 7 347.404 I 19122.2 8 384.547 I 18996.1 9 356.937 I 18614.5 10 389.407 I 18081.1 11 352.981 I 17196.3 12 ▼ Possible interferences on Co (345.351 nm) ■ ↓	341.234	I.	22363.3	5			
347.404 I 19122.2 8 384.547 I 18996.1 9 356.937 I 18614.5 10 389.407 I 18081.1 11 352.981 I 17196.3 12 ▼ Possible interferences on Co (345.351 nm) ■ ↓ 150,000 ↓ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000	350.631	1	21835.8	6			
384.547 I 18996.1 9 356.937 I 18614.5 10 389.407 I 18081.1 11 352.981 I 17196.3 12 ▼ Possible interferences on Co (345.351 nm) ■ ↓ 150,000 ↓ 100,000 ↓\\ 100,00	352.684	Ê	21444.5	7			
356.937 I 18614.5 10 389.407 I 18081.1 11 352.981 I 17196.3 12 ▼ Possible interferences on Co (345.351 nm) ■ ↓ 150,000 ↓ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,000 ↓\\ 100,0	347.404	L.	19122.2	8			
389.407 I 18081.1 11 352.981 I 17196.3 12 ▼ Possible interferences on Co (345.351 nm) ■ ↓ 150,000 ↓ 100,000 ↓ 100,000 ↓ ↓	384.547	1	18996.1	9			
252.981 I 17196.3 12 Possible interferences on Co (345.351 nm) Image: Contract of the second seco	356.937	L.	18614.5	10			
Possible interferences on Co (345.351 nm)		1	18081.1	11			
	389.407	1.5					
100,000	352.981	ences on			-		
Co Co	352.981 Possible interfere	ences on				<u></u>	 Н <u>о</u>
	352.981 Possible interfere	ences on				<u></u>	· · ·
	352.981 Possible interfere 150,000	ences on					Ho
	352.981 Possible interfere 150,000	ences on					Ho
	352.981 Possible interferent 150,000 100,000	ences on		m) [Ho Ho

- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>linear</u> with blank subtraction
- ✓ Concentration intervals for Co: 0 - 1.50 ppm

Chromium

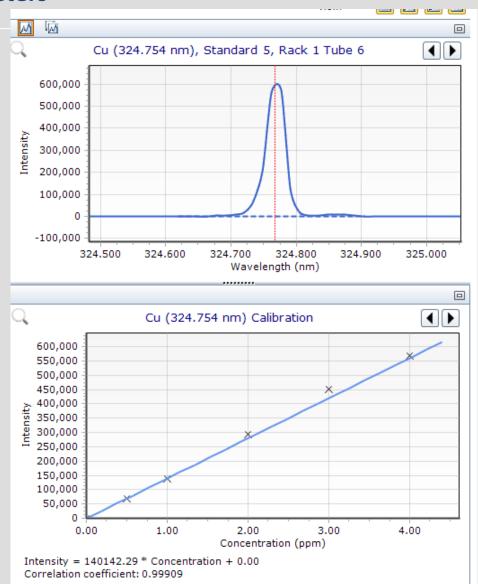

- ✓ Emission line selected: 425.433 nm
- Possible interferences are shown on graph below

	ent: Cr	Rec	commended	lia 🔘 Ali				
				Add				
Wavelength (nm)	lon	Intensity	Order	-				
425.433	1	273540.4	1					
357.868	I.	212267.6	2					
427.480	I.	210416.3	3	=				
359.348	I.	182831.0	4	=				
428.972	I.	153595.5	5					
360.532	I.	129968.1	6					
520.844	I	101895.7	7					
520.604	I	71082.6	8					
520.452	I	43963.2	9					
283.563	Ш	13330.7	10					
540.979	I.	12404.2	11					
302.158	I.	11201.1	12	-				
Possible interfe	erences on	Cr (425.433 nm	1)					
Possible interfe	erences on	Cr (425.433 nm	ו)	III .				
Possible interfe ^{300,000}	erences on	Cr (425.433 nm	ı) 					
	erences on	Cr (425.433 nm	ı) 					
300,000	erences on	Cr (425.433 nm	ı) 					
300,000	erences on	Cr (425.433 nm	ı) 					
300,000	erences on	Cr (425.433 nm	י) 					. .
300,000 250,000 200,000	erences on	Cr (425.433 nm	י) - י ן י					
300,000 250,000 200,000 150,000	erences on	Cr (425.433 nm	η) 					· · ·
300,000 250,000 200,000 150,000 50,000	erences on			Cr		,	_, , , N.82√	, , ,
300,000 250,000 200,000 150,000 100,000				Cr	<u>, in </u>	<u><u>C</u>e 425.0</u>	ŅФ	

- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>rational</u> with blank subtraction
- ✓ Concentration intervals for Cr:

0 – 2.50 ppm

<u>Copper</u>


✓ Emission line selected: 324.754 nm

 Possible interferences are shown on graph below

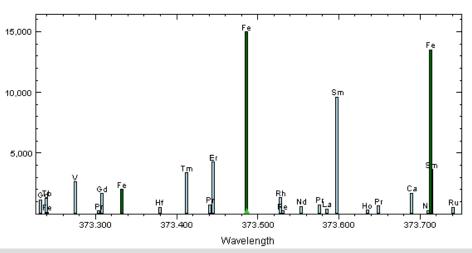
			_					
				Add				
Wavelength (nm)	lon	Intensity	Order	-				
324.754	1	477458.5	1					
327.395	I	245232.7	2					
510.554	I	7105.1	3	=				
217.895	I	3732.7	4	-				
223.008	I	3053.0	5					
216.510	I	2413.5	6					
218.172	I.	2326.5	7					
219.958	I	2090.8	8					
521.820	I	2009.4	9					
316.968	I.	1758.9	10					
578.213	I	1753.8	11					
222.570	1	1751.3	12	-				
Possible interfer	ences or	n Cu (324.754 nr	n)	III .				
Possible interfer	ences or	n Cu (324.754 nr	n)				 	-
	ences or	n Cu (324.754 nr	n)				 	1
Possible interfer	ences or	n Cu (324.754 nr	n)			· .	 	-1
Possible interfer	ences or	n Cu (324.754 nr	n)				 	-1
Possible interfer	ences or	n Cu (324.754 nr	n)			·	 	-1
Possible interferen	ences or	n Cu (324.754 nr	n)		- · -	• •	 · · ·	T
Possible interfer 500,000	ences or	n Cu (324.754 nr	n)				 	-1
Possible interference 500,000 400,000 300,000	ences or	n Cu (324.754 nr	n)		- . .		 · · ·	1
Possible interferen	ences or	n Cu (324.754 nr	n)				 	1
Possible interference 500,000 400,000 300,000	- Pr	т. п е				- 1	 , ,	

- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>linear</u> with blank subtraction
- ✓ Concentration intervals for Cu: 0 - 4.0 ppm

Selected Element Fe

2. Optimization of instrumental parameters

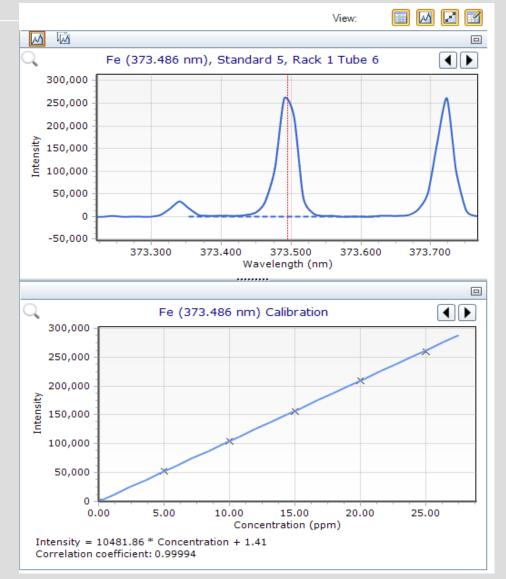
 ✓ Emission line selected: 373.486 nm


Iron

 Possible interferences are shown on graph below

				Add
Wavelength (nm)	lon	Intensity	Order	*
371.993	I	16875.6	1	
259.940	Ш	6819.3	2	
373.486	1	14977.3	3	E
385.991	I.	15401.6	4	=
373.713	I.	13533.4	5	
358.119	I.	12912.6	6	
302.064	I.	12696.8	7	
382.043	I.	12088.8	8	
374.949	I.	10385.4	9	
374.547	I.	8789.9	10	
438.354	I.	7951.8	11	
382.588	I	7763.9	12	-

Possible interferences on Fe (373.486 nm)



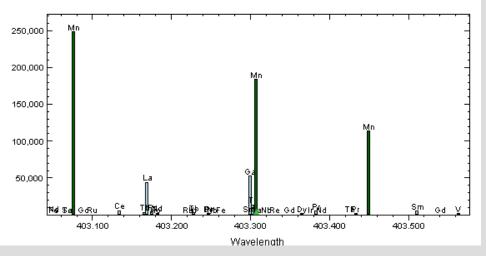
- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>linear</u> with blank subtraction
- ✓ Concentration intervals for Fe:

0 – 25 ppm

Selected Element: Mn

2. Optimization of instrumental parameters

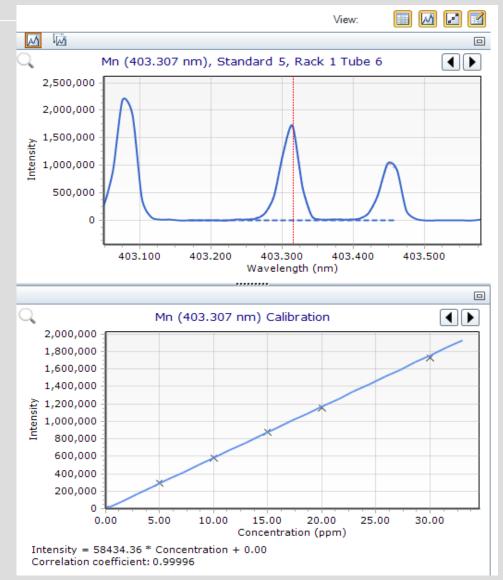
<u>Mangan</u>


✓ Emission line selected: 403.307 nm

 Possible interferences are shown on graph below

				Add
Wavelength (nm)	lon	Intensity	Order	-
403.076	I	248229.4	1	
403.307	1	183876.2	2	
257.610	П	140320.0	3	=
279.482	I	128520.7	4	=
259.372	П	118435.0	5	
403.449	I.	113710.2	6	
279.827	I	104348.6	7	
260.568	П	97027.9	8	
280.108	I.	68317.4	9	
294.920	П	27932.4	10	
293.931	П	18848.0	11	
293.305	Ш	10719.1	12	-

Possible interferences on Mn (403.307 nm)



Recommended O All

- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>linear</u> with blank subtraction
- ✓ Concentration intervals for Mn: 0 - 30 ppm

Selected Element: Ni

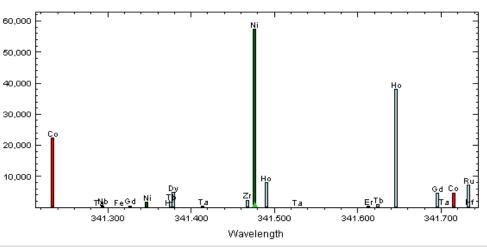
2. Optimization of instrumental parameters

✓ Emission line selected:
 341.351
 341.476 nm
 344.476 nm
 345
 346
 305
 346
 305
 346
 306
 346
 307
 341.476 nm

Nickel

are shown on graph

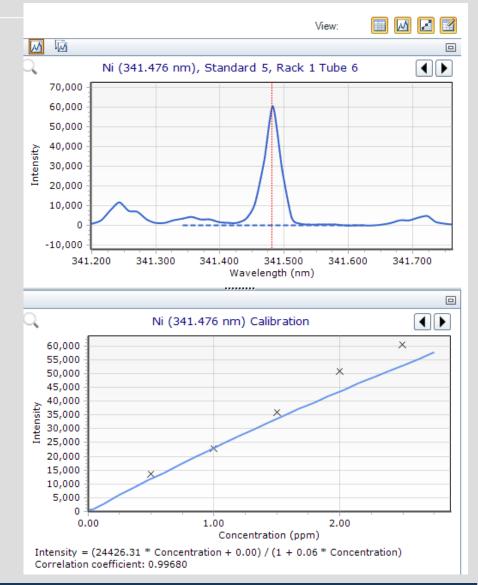
below


				Add
Wavelength (nm)	lon	Intensity	Order	<u>^</u>
352.454	I	77567.8	1	
341.476	1	57306.4	2	
361.939	I	37622.5	3	E
351.505	I I	37432.8	4	=
349.295	I.	29919.4	5	
346.165	I I	29807.0	6	
305.082	I I	28111.5	7	
345.846	I	23693.7	8	
300.248	I	23042.5	9	
310.155	I I	21877.3	10	
344.626	I I	20005.2	11	
232.003	I	16363.9	12	-

Recommended

AI

Possible interferences on Ni (341.476 nm)



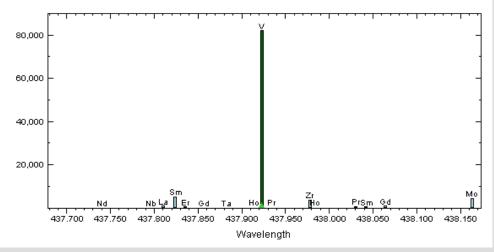
- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>rational</u> with blank subtraction
- ✓ Concentration intervals for Ni:

0 – 2.5 ppm

Selected Element: V

2. Optimization of instrumental parameters

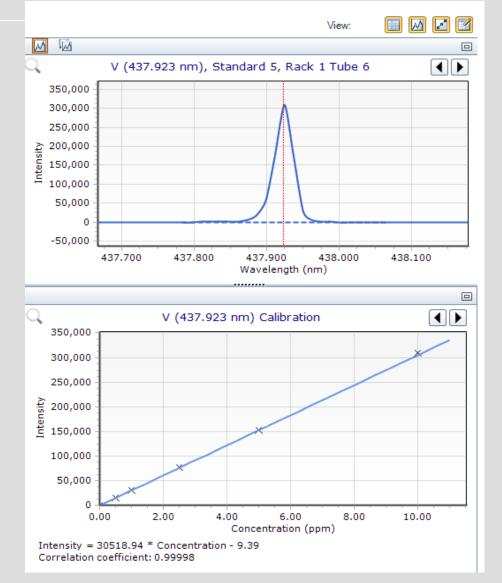
 ✓ Emission line selected: 437.923 nm


Vanadium

 Possible interferences are shown on graph below

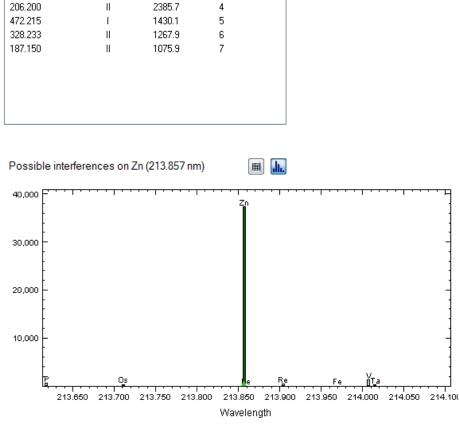
				Add
Wavelength (nm)	lon	Intensity	Order	-
309.311		94468.9	1	
437.923	1	81952.6	2	
310.229	Ш	74857.6	3	=
438.472	I	64163.4	4	=
311.070	Ш	51223.8	5	
438.997	I	42627.0	6	
318.397	I.	38819.2	7	
411.178	I	38197.5	8	
311.837	II	37670.5	9	
292.401	Ш	34901.5	10	
312.528	Ш	30806.4	11	
318.539	1	29410.7	12	-

Possible interferences on V (437.923 nm)



- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>linear</u> with blank subtraction
- ✓ Concentration intervals for V:

0 – 10 ppm


Selected Element: Zn

2. Optimization of instrumental parameters

<u>Zinc</u>

 ✓ Emission line selected: 213.857 nm
 ✓ Possible interferences are shown on graph below
 ✓ Possible interferences

Recommended O All

Order

1

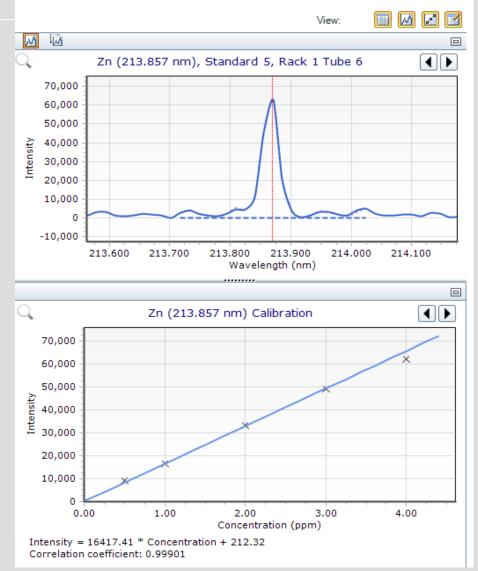
2

3

Intensity

37285.1

2462.2


2407.4

Add

- Viewing position and nebulizer pressure optimized prior to analysis using sample solutions (matrix effect included)
- ✓ Calibration fit: <u>linear</u> with blank subtraction
- ✓ Concentration intervals for Zn:

0 – 4 ppm

3. Results

- □ Nisan 2015 Soil reference material; TUBITAK UME
- □ 6 replicates for analytes

	Со	Cr	Cu	Fe	Mn	Ni	v	Zn
REFERENC E VALUE mg/kg	22.7	161	38.4	42650	778	109	140	86.9
MPAES VALUE mg/kg	24.75	153.02	36.41	40736	813.57	106.41	132.89	88.44
s	0.64	4.33	0.32	566	6.40	1.44	2.01	0.98
Δ	2.05	7.98	2.00	1913	35.57	2.59	7.11	1.54

4. Further steps

- □ Instrumental parameters for several elements need to be improved
- Reference values will be validated by comparison between laboratories using different detection techniques
- MWP-AES method analyses of selected analytes in soil will be compared with ICP-MS or IDMS

4. Further steps

Measurement uncertainty budget to be obtained using empirical approach intra-laboratory validation and usage of comparison data for bias estimation

$$u_c = \sqrt{u_{prec}^2 + u_{bias}^2}$$

- The main sources of uncertainty:
- ✓ Purity of chemicals
- ✓ Plasma stability

4. Further steps

Usage of high purity chemicals minimises the occurrence of spectral interferences

□ Uncertainty from instrumental sources controlled by QC samples

INSTITUT ZA MJERITELJSTVO BOSNE I HERCEGOVINE * ИНСТИТУТ ЗА МЕТРОЛОГИЈУ БОСНЕ И ХЕРЦЕГОВИНЕ * INSTITUTE OF METROLOGY OF BOSNIA AND HERZEGOVINA

Questions?

Thank you for your attention!

